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Abstract. lhermal transmissivity, a notion which arises empirically and leads to mnsid- 
erable simplification of analyses of discrete spin systems, b of fundamental inlerest in 
graphical and real-space renormalization gmup appmaches. In this paper we p-nt 
a formulation of the theory of thermal transmissivity. We show that the situation is 
different depending on whether the interaction matrices Commute. In the mmmuting 
case the thermal transmissivity Q given bj the eigenvalues of the interaction mauix, 
while in the nonammul ing  case it is given bj the eigenvalues as wII BS matrices which 
Mockdiagonalize the interaction matrix. lhe meaning of the thermal tmnsmisivily in 
diagrammatic ana- of Spin models is also elucidated, and our mul l s  are illustrated 
by examples. Finaliy, we present a general formulation of disorder solutiom for spin 
madels in terms of thermal transmissivities. 

1. Introduction 

In the analyses of discrete spin systems certain wriables arise empirically which lead to 
considerable simplification. A well-known example is the hyperbolic tangent function 
occurring in high-temperature expansions of the Ising model [l]. Let K denote the 
Wing interaction, then a sequence of king interactions K,,  K z ,  . . . can be replaced 
by a single K given by the product relation t a n h  K = ni t a n h  K i .  Furthermore, 
in the diagrammatic expansion of the partition function using t a n h  K as a bond 
variable, one finds terms containing vertices with an odd number of incident bonds 
vanish identically. Because of its usefulness in decimations of spins as well as in 
real-space renormalition group treatments, this variable has been coined the term 
thermal transmissivity, or simply transmbsivity [2]. Explicit forms of transmissivity 
have also been obtained for other spin systems, including the Potts model [3, 41, the 
Z(q) model [5] and, very recently, the discrete cubic models [6, 71. In view of its 
fundamental importance, we present a general formulation of thermal transmissivity 
for any spin system. Our results are illustrated with wrious examples. 

Consider a general q-state spin system for which two spins interact via a set 
of interaction parameters K { I C , ,  IC2,. . .}. Generally, any two-spin interaction 
can be characterized by an interaction matrix W(K) whose element W,@(K) is the 
Boltzmann factor between WO spin states Q and p = 0,1,. . . , q - 1. In this paper 
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we confine ourselves to (stochastic) interaction matrices with each row and column 
containing the Same set of Boltzmann factors. Thus we have 
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where A, is independent of a, and the matrix W is not necessarily symmetric. Prac- 
tically all spin models of physical interests are of this kind including, among others, 
the Ising, Potts (81, chiral Potts [9, lo], Ashkin-Rller Ill], { N , , N R }  [12], Z(q) and 
cubic [13] models. We then look for entities, which can be either scalar functions 
t,(K) and/or matrices Ti(K), such that the decimation of the intervening spin in a 
sequence of two interactions K, K’ yields a set of effective interactions K” given by 
the product relation 

t;(K”) = ti(K)ti(K’) Ti(,”) = T;(K)T;(K’). (2) 

The role of these entities in diagrammatic analyses will also be examined. 

2. Commuting interaction matrices 

We consider first the case of commuting and diagonalizable interaction matrices, Le. 
interaction matrices with different parameters commute and can be simultaneously 
diagonalized. Physically, the commutation of interaction matrices means that the 
physics is unchanged if two interactions connected in series are interchanged; this 
is often the case in models of physical interest. Then, except in the exotic cases of 
nilpotent matrices, the interaction matrices with different parameters can be simulta- 
neously diagonalized. That is, there exists a non-singular q x q matrix P, independent 
of K, such that 

where Ai = A,(K) are the eigenvalues of W(K) and A, is the largest one which is 
given by (1) by Frobenius’ theorem. 

Now the interaction matrix for a series of two interactions K and K‘ is, by 
definition, W( K)W( K’). Clearly, this matrix is also diagonalized by the similarity 
transformation (4) with diagonal elements A,(K)A,( K’). This points to the entities 

ti(K) = Ai(K)/X,(K) (5) 

with i # 0 ranging Over all distinct eigenvalues, possessing the product property 
(2), and therefore can be taken to be the thermal transmissivities. Indeed, for the 
zero-field king model we have A, = 2cosh IC, A, = 2sinh K, t ( K )  = A, /A ,  = 
tanh K. Other examples are given in section 5. It should be pointed out that if the 
interaction matrices are not diagonalizable, but can be simultaneously transformed 
into a triangular form with the eigenvalues appearing in the main diagonal, then the 
transmissivities can also be taken to be (5). 
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3. Diagrammatic analyses 

We continue discussions of the case of commuting interaction matrices and examine 
the role played by the transmissivity (5 )  in diagrammatic analyses. Let ui (a column 
matrix) and vi  (a row matrix) be the respective right and left eigenvector correspond- 
ing to Xi, which are shared by the "muting interaction matrices, satisfyingt 

WU; = X i U i  viw = XiVi V.U. I = 6. . .  $1 (6) 

By Frobenius' theorem and explicit construction all elements of U,, and v,, are equal 
to I/&. Define q x q matrices 

(7) M. , - , ,  = U.V.  i = O , l )  ...( q - 1 .  

We have 

and, using (6), 

MiM- I = Mi6jj 

and thus we can write 

where 

Explicitly, we have 

and, from (l), 

(9) 

t It is assumed that, in lhe mase of degenerale eigenvalues, we have formed linear mmbinalions ot Ihe 
eigenvectors so lhal (6) holds. 
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Thus, if Fa@ is taken to be the bond variable in diagrammatic expansions, all diagrams 
containing vertices with a single incident bond will have zero weight. This fact con- 
siderabiy reduces the number of diagrams that need to be considered. Furthermore, 
using (6) and (9), one finds for a series of two interactions K and K', 
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where t i  = t i ( K ) , t :  = l i ( K ' ) ,  i(# 0 )  ranging over all transmissivities. Therefore, 
the intervening spins in a sequence of interactions can be conveniently decimated, 
with the net result that the sequence is replaced by a single interaction whose effective 
transmissivity is given by the product relation (2). This property has been found to 
be extremely useful in analysing spin models [4, 141 and in carrying out real-space 
R n o r m d i ~ i ~ u n  group anaiyses p, ;, i 7 j .  

4. Non-commuting interaction matrices 

If different interaction matrices do  not commute, they cannot be simultaneously diag- 
onalized. However, by Frobenius' theorem the largest eigenvalue A, is a!wa_ys given 
by (1) and non-degenerate, and therefore can be singled out by taking a similar- 
ity transformation P with Poi = (P- ' ) i o  = l/fi.  Furthermore, there may exist 
some symmetry in the interaction which permits further simultaneous diagonalization 
andlor block-diagonalization of the remainder of the interaction matrices. Then, the 
transmissivity can be taken to be the set of eigenvalues and block matrices thus ob- 
tained. Of course, if one is only interested in transmissivities which are scalars, one 
can always take the associated determinants instead of the matrices themselves. In 
case some of the block matrices are triangular, then the set includes the diagonal 
elemenu of these triangular matrices, which are eigenvalues themselves, instead of 
the matrices. 

An important class of spin models with non-commuting interaction matrices satis- 
fying (1) are the interaction models introduced by Bigs  [15, 161. Let a, P, .  . . denote 
,I.- n,n...n"." ,.F "_,..... ,-. ,.c ,.-A"- h, TI."" 4.- :"...-..,,.:,." Î  ^I :" 
,U* CIClUCllW "L .I gruuy U U, ","Cl ,". , , IC, ,  ",G "IL.zi la.cLLuII  ,,,JW U aii Iv-s:ate 
spin model with Boltzmann weights 

Wea = W(a- 'P)  a , P  E G. (16) 

Here, the interaction matrices (16) are elements of the group algebra for G. Namely, 
the decimation of a spin in a sequence of two interactions gives rise to an effective 
interaction of the Same type, a fact which follows from the identity 

We use the permutation group G = S, to illustrate our discussions. For defi- 
niteness order the six elements {e,  Pl,P,,, Pz,Pl,, Plzr PZ3, P,'} of S, in the order 
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given, where e is the identity permutation and the Pi, the transpositions. The inter- 
action matrix (16) then takes the form 

where 

w, = 
b c a  f d e  

Note that W, is not cyclict. Using a similarity transformation generated by 

P=,/q 1 q \  

d2 \ S  -qJ 

we. find 

Further choosing 

where w = e i Z r / 3 ,  we find 

A, = a +  b + c f ( d +  e +  f) 
a + bw2 + cw 

f ( d  + ew2 + fw) +(d + ew + fwZ) 
a + bw + cwz 

m + - - ( *U,, ~ 1 1  ::)=( 
Here A, = A, is the largest eigenvalue. In a similar fashion the product of two 
matrices WW' is transformed by the Same similarity transformation into one with 
block diagonal elements A,X; and m+mi. The transmissivities are now taken to be 
the function t, and the two matrices given by 

1 ,  = x _ / x +  TI = "+/A+ T, = " - / A + .  (23) 

lb clarify the meaning of the transmissivity (23), we consider the diagrammatic 
expansion (of the partition function, for example) and write W in the form of (10) 
but now with 

F = q[l,M, t PITLQt + P2TzQ21 (24) 

t With other odelings or elemem of S, mrresponding 10 h e  interehange 01 some mlumns and -, 
W n n  be puI inlo other forms including one given by (zt :) where bath WI and W, are qClic, 

and W z  denotes lhe transpose of W2. 
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where M, is given by (3, P i  is the 6 x 2  matrix consisting of the (3i-1)th and (3i)th 
columns of P-', and Q, the 2 x 6 matrix consisting of the (3i-1)th and ( 3 9 t h  rows 
of P. Again, the identity (13) holds, meaning that all diagrams containing vertices 
with a single incident bond will have zero weight in the expansion. We further find, 
in analogy to (15), 

J M Maillard er a1 

5 

F,p(ti ,TI  3 Tz)Fp,(t;t  Ti I 1;) = F,-,(tit; 3 TIT;, TzT;). (25) 
P=O 

"Is, the decimation of an intervening spin in a series of two interactions generates 
an equivalent transmissivity according to the product rule (2), now applying to 1,  as 
well as matrices 1, and 1,. 

While the two matrices m, = ma( a ,  b ,  . . . , f )  and mb = me( a', b', . . . , f'), 
a = + or -, with different parameters generally do not commute, it is readily 
verified that they do commute if we have 

~ 1 2 / ~ 2 1  = 4 2 / 4 1  (U11 - U22) /%2 = ( 4 1  - 4 2 ) / 4 2 .  (26) 

That is, m+ and hence 1, and T,, can be. completely diagonalized by a similarity 
transformation, independent of the parameters, in the parameter space 

(27) ( b - c ) 2  = c2 e - f  = c l  d 2 + e 2 +  f 2 - b d - e f -  f d  2 d - e - f  

where C, and C2 are constants. In this subspace the transmissivities are given by 
t i  = A i / &  i = 1,2,. .. ,5, where Ai are the eigenvalues of W .  Evplicit examples 
satisfying (27) are given in the next section. 

5. Dramples 

Ising model. t = X,/Ao = tanh IC. 
Polls mode[. The interaction matrix has two distinct eigenvalues, A, = eK + q- 1 and 
a (9-1)-fold degenerate A, = eK-1. Hence, t = Al/A, = ( e K - l ) / ( e K + q - l ) .  
q-stare chirol Ports model [9, 101. Let the lattice edges be oriented from site i to site 
j such that the Boltzmann factor is We,., = W(ai  - a j ) , ( m o d q ) .  Then, there 
exist q - 1 distinct transmissivities 

where A, = W ( a ) .  This result also applies to the Z(q) model [5, 171. For 
symmetric (and cyclic) W the transmissivities (28) are real if W ( a )  are real. 
Cubic model. A discrete n-component cubic modcl [I31 can be described by an 
interaction matrix with elements 

Wa0 = exp[Zi(S, . S o )  + L ( S , .  (29) 



Thermal uansmissiviry in dircrete spin ystems 2527 

where Sa is a vector which can point in one of the 2 n  directions along the positive 
and negative Cartesian axes in an ndimensional space, ie. 

sa = ( * l , O , .  . . , O ) , ( O , & l , .  . . ,O), . . . , (O ,O, .  . . , *l). (30) 

Xi interaction matrix has three distinct eigenvalues 

A, = eL(eK + e - K )  + 2 ( n  - I )  

A, = eL(eK - e - K )  

A, = eL(eK + e - K )  - 2 

n-fold 

(n - l)-fold 

and hence we have 

1, = A , / A ,  t2 = A 2 / X , .  (32) 

Tkese yicld the known results 171. 
Interaction model S3-commuting subspace. In the preceding section we have mnsid- 
ered one example of Bigs’ interaction models corresponding to the group %, and 
showed that its interaction matrices mmmute in the subspace (27). Generally, the 
constraint (27) gives rise to intersections of two hypersurfaces in the parameter space. 
But there exist special solutions of (27) for which some of the Boltzmann weights are 
equal and the constraint is automatically satisfied. Fbr positive Boltzmann weights 
there are three such cases, which are Listed below together with the two additional 
transmissivities obtained from the further diagonalization of T, and T,: 

(i) b =  c , e =  f , i 3  = ( a - b + d - e ) / X , , t 4 = ( a - b - d + e ) / A o  
(ii) b = e =  f , c = d , t 3 = ( a - b ) / X a , t 4 = ( a - c ) A o  
(iii) b =  d , c  = e = f , t 3  = (a  - b ) / X a , t 4  = (a-c)A, .  

Case (U) has also been noted veery recently to be of interest in another context; its 
parameter space is naturally foliated in terms of elliptic curves [MI. 
Inreraction model S4. The group S4 has 24 elements. Arranging them in the or- 
der of { { s ) , { s ~ , ~ } ] ,  where s = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 3 p 2 4 ~ p 1 4 p 2 ~ ~ p 2 4 ~ 2 3 ~ p 1 4 ~ 1 2 ~ p 1 2  

P13, PI3Pl4, PZ3Pz4, Pl3PI2, PI4Pl3, P12P14}, we find the interaction matrix W to 
again assume the form (18) but now with 

A B C  DlZ34 E1234 F1234 

F2143 D3412 

F3412 D4321 ‘2143 

where 

\c3 c4 c, c2 J 
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As before, this interaction matrix can be block-diagonalized hy a similarity aansfor- 
mation generated by P given by (19), but now with 

1 0 0 0  1 1  1 1  
I = ( !  H H) ' a = ' ; ' = 5 ( ;  1 1 I; 1 -1 -1 ;l) 

I -1-1-(0 O 1) lc=l;.=(o 1 0 0 0  l )  
0 0 1 0  0 1 0 0  

0 1 0 0  0 0 1 0  
* - b  - 1 0  0 0 

( a * d ) i j k f = ( a i + a j - a k - a l ) f ( d i + d j - d k - d , )  (38) 

etc. Thus, the transmissivity consists of t = X- /X+ ,  the two 3 x 3 matrices m,/X+ 
and two 8 x 8 matrices Mi/X+ given by (37) and (38). 
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Figure 1. Unil cell of a c h i d  checkerbard lallice. The Full " d e s  denole spins that 
are decimaled. 

6. Disorder solution 

Our formuiation of the transmissivity permits a simple and diiect derivation of dis- 
order solutions [19]. Consider, for example, the case of a chiral square lattice a 
unit cell of which, say, the black square of a checkerboard, is shown in figure 1, 
where the lattice edges are ociented to Lndicate that the interaction matri?r may not 
be symmetric. Define WmB(K) Wp,(K) which is always possible, provided that 
the interaction is of the same class when the edge orientation is reversed. Then, in 
the example shown in figure 1, the criterion for disorder solution is [19] 

where X is a multiplicative factor which turns out to be the per-site partition function. 
Combining (13) with (15) and using the fact that 

we fmd from (39) the following conditions for the disorder solution: 

~ A K ~ ) W W ( K ~ )  = t i ( - & )  (41) 

Ti ( K, )Ti (  K,)Tj(Kd = T,(-K,) (42) 

where i ranges Over all transmissivities. This results in the following expression for 
the per-site partition function: 
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7. Summary and discussions 

We have shown that the transmissivity of a spin system, which are entities transforming 
according tn the product property (2) under the decimation of spins, can be taken 
to he the eigenvalues as well as matrices which block-diagonalize the interaction 
matrices. If the interaction matrices with different parameters mmmute and are 
diagonalizable, then the transmissivity is given by the ratios of the eigenvalues. If 
the interaction matrices do not mmmute as in the example of the interaction model 
defined hy &, the transmissivity entities are given by eigenvalues as well as block 
matrices. In all cases the largest eigenvalue is distinct permitting the use of Fe@ 
given by (12) as a bond variable in diagrammatic expansions. Then we find all 
diagrams containing vertices with a single incident bond to vanish identically. In 
addition, diagrams transform according to (15) or (25) when spins are decimated. 

Finally, it is useful to mention some possible extensions of our formulation. Our 
anab i s  of the transmissivity using the method of interaction matrices now opens 
the door for carrying out similar analyses for a host of other problems. These 
include the dual transmissivity [3], the break-collapse method widely used in real- 
space renormalization group studies [3, 7, 201, and the important connection of 
transmissivity with correlation functions [21, 221. In addition, the new formulation 
of transmissivity as developed here can also be used as a tool to obtaining high- 
temperature expansions for complex discrete spin systems. 
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